Actions of Galois Groups on Invariants of Number Fields

نویسنده

  • A. KONTOGEORGIS
چکیده

In this paper we investigate the connection between relations among various invariants of number fields L coresponding to subgroups H acting on L and of linear relations among norm idempotents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GALOIS MODULES AND p-ADIC REPRESENTATIONS

In this paper we develop a theory of class invariants associated to p-adic representations of absolute Galois groups of number fields. Our main tool for doing this involves a new way of describing certain Selmer groups attached to p-adic representations in terms of resolvends associated to torsors of finite group schemes.

متن کامل

The Splitting Field of X3 − 5 over Q

In this note, we calculate all the basic invariants of the number field K = Q(3 √ 5, ω), where ω = (−1 + √ −3)/2 is a primitive cube root of unity. Here is the notation for the fields and Galois groups to be used. Let

متن کامل

A pr 2 00 5 GALOIS MODULE STRUCTURE OF p TH - POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE

In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F . In 1947 Šafarevič initiated the study of Galois groups of maximal pextension...

متن کامل

Bauer-Furuta invariants and Galois symmetries

The Bauer-Furuta invariants of smooth 4-manifolds are investigated from a functorial point of view. This leads to a definition of equivariant BauerFuruta invariants for compact Lie group actions. These are studied in Galois covering situations. We show that the ordinary invariants of all quotients are determined by the equivariant invariants of the covering manifold. In the case where the Bauer...

متن کامل

87 - 1 New ramification breaks and additive Galois structure

Which invariants of a Galois p-extension of local number fields L/K (residue field of char p, and Galois group G) determine the structure of the ideals in L as modules over the group ring Zp[G], Zp the p-adic integers? We consider this question within the context of elementary abelian extensions, though we also briefly consider cyclic extensions. For elementary abelian groups G, we propose and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005